Airing

Airing

哲学系学生 / 小学教师 / 程序员,个人网站: ursb.me
github
email
zhihu
medium
tg_channel
twitter_id

引擎剖析:JS 中的字符串转数值

JS 中,字符串转数值的方式有以下 9 种:

  1. parseInt()
  2. parseFloat()
  3. Number()
  4. Double tilde (~~) Operator
  5. Unary Operator (+)
  6. Math.floor()
  7. Multiply with number
  8. The Signed Right Shift Operator(>>)
  9. The Unsigned Right Shift Operator(>>>)

这几种方式对运行结果的差异,如下表所示:

字符串转数值方案对比

对比表格的源码发布到了 https://airing.ursb.me/web/int.html,需要可自取。

除了运行结果上的存在差异之外,这些方法在性能上也存在着差异。在 NodeJS V8 环境下,这几个方法微基准测试的结果如下:

parseInt() x 19,140,190 ops/sec ±0.45% (92 runs sampled)
parseFloat() x 28,203,053 ops/sec ±0.25% (95 runs sampled)
Number() x 1,041,209,524 ops/sec ±0.20% (90 runs sampled)
Double tilde (~~) Operator x 1,035,220,963 ops/sec ±1.65% (97 runs sampled)
Math.floor() x 28,224,678 ops/sec ±0.23% (96 runs sampled)
Unary Operator (+) x 1,045,129,381 ops/sec ±0.17% (95 runs sampled)
Multiply with number x 1,044,176,084 ops/sec ±0.15% (93 runs sampled)
The Signed Right Shift Operator(>>) x 1,046,016,782 ops/sec ±0.11% (96 runs sampled)
The Unsigned Right Shift Operator(>>>) x 1,045,384,959 ops/sec ±0.08% (96 runs sampled)

可见,parseInt()parseFloat()Math.floor() 的效率最低,只有其他运算 2% 左右的效率,而其中又以parseInt()最慢,仅有 1%。

为什么这些方法存在着这些差异?这些运算在引擎层又是如何被解释执行的?接下来将从 V8、JavaScriptCore、QuickJS 等主流 JS 引擎的视角,探究这些方法的具体实现。

首先来看看 parsrInt()

1. parseInt()#

ECMAScript (ECMA-262) parseInt
image

1.1 V8 中的 parseInt ()#

在 V8 [→ src/init/bootstrapper.cc] 中定义了 JS 语言内置的标准对象,我们可以找到其中关于 parseInt 的定义:

Handle<JSFunction> number_fun = InstallFunction(isolate_, global, "Number", JS_PRIMITIVE_WRAPPER_TYPE, JSPrimitiveWrapper::kHeaderSize, 0, isolate_->initial_object_prototype(), Builtin::kNumberConstructor);

// Install Number.parseInt and Global.parseInt.
Handle<JSFunction> parse_int_fun = SimpleInstallFunction(isolate_, number_fun, "parseInt", Builtin::kNumberParseInt, 2, true);

JSObject::AddProperty(isolate_, global_object, "parseInt", parse_int_fun,
 native_context()->set_global_parse_int_fun(*parse_int_fun);

可以见,Number.parseInt 和全局对象的 parseInt 都是基于 SimpleInstallFunction 注册的,它会将 API 安装到 isolate 中,并将该方法与 Builtin 做绑定。JS 侧调用 pasreInt 即为引擎侧调用 Builtin::kNumberParseInt

Builtin (Built-in Functions) 是 V8 中在 VM 运行时可执行的代码块,用于表达运行时对 VM 的更改。目前 V8 版本中 Builtin 有下述 5 种实现方式:

  • Platform-dependent assembly language:很高效,但需要手动适配到所有平台,并且难以维护。
  • C++:风格与 runtime functions 非常相似,可以访问 V8 强大的运行时功能,但通常不适合性能敏感区域。
  • JavaScript:缓慢的运行时调用,受类型污染导致的不可预测的性能影响,以及复杂的 JS 语义问题。现在 V8 不再使用 JavaScript 内置函数。
  • CodeStubAssembler:提供高效的低级功能,非常接近汇编语言,同时保持平台依赖无关性和可读性。
  • Torque:是 CodeStubAssembler 的改进版,其语法结合了 TypeScript 的一些特征,非常简单易读。强调在不损失性能的前提下尽量降低使用难度,让 Builtin 的开发更加容易一些。目前不少内置函数都是由 Torque 实现的。

回到前文 Builtin::kNumberParseInt 这个函数,在 [→ src/builtins/builtins.h] 中可以看到其定义:

// Convenience macro to avoid generating named accessors for all builtins.
#define BUILTIN_CODE(isolate, name) \
  (isolate)->builtins()->code_handle(i::Builtin::k##name)

因此这个函数注册的原名是 NumberParseInt,实现在 [→ src/builtins/number.tq] 中,是个基于 Torque 的 Builtin 实现。

// ES6 #sec-number.parseint
transitioning javascript builtin NumberParseInt(
    js-implicit context: NativeContext)(value: JSAny, radix: JSAny): Number {
  return ParseInt(value, radix);
}


transitioning builtin ParseInt(implicit context: Context)(
    input: JSAny, radix: JSAny): Number {
  try {
    // Check if radix should be 10 (i.e. undefined, 0 or 10).
    if (radix != Undefined && !TaggedEqual(radix, SmiConstant(10)) &&
        !TaggedEqual(radix, SmiConstant(0))) {
      goto CallRuntime;
    }

    typeswitch (input) {
      case (s: Smi): {
        return s;
      }
      case (h: HeapNumber): {
        // Check if the input value is in Signed32 range.
        const asFloat64: float64 = Convert<float64>(h);
        const asInt32: int32 = Signed(TruncateFloat64ToWord32(asFloat64));
        // The sense of comparison is important for the NaN case.
        if (asFloat64 == ChangeInt32ToFloat64(asInt32)) goto Int32(asInt32);

        // Check if the absolute value of input is in the [1,1<<31[ range. Call
        // the runtime for the range [0,1[ because the result could be -0.
        const kMaxAbsValue: float64 = 2147483648.0;
        const absInput: float64 = math::Float64Abs(asFloat64);
        if (absInput < kMaxAbsValue && absInput >= 1.0) goto Int32(asInt32);
        goto CallRuntime;
      }
      case (s: String): {
        goto String(s);
      }
      case (HeapObject): {
        goto CallRuntime;
      }
    }
  } label Int32(i: int32) {
    return ChangeInt32ToTagged(i);
  } label String(s: String) {
    // Check if the string is a cached array index.
    const hash: NameHash = s.raw_hash_field;
    if (IsIntegerIndex(hash) &&
        hash.array_index_length < kMaxCachedArrayIndexLength) {
      const arrayIndex: uint32 = hash.array_index_value;
      return SmiFromUint32(arrayIndex);
    }
    // Fall back to the runtime.
    goto CallRuntime;
  } label CallRuntime {
    tail runtime::StringParseInt(input, radix);
  }
}

看这段代码前,先科普下 V8 中的几个数据结构:(V8 所有数据结构的定义可以见 [→ src/objects/objects.h])

  • Smi:继承自 Object,immediate small integer,只有 31 位
  • HeapObject:继承自 Object,superclass for everything allocated in the heap
  • PrimitiveHeapObject:继承自 HeapObject
  • HeapNumber:继承自 PrimitiveHeapObject,存储了数字的堆对象,用于保存大整形的对象。

我们知道 parseInt 接收两个形参, 即 parseInt(string, radix),此处亦如是。 实现流程如下:

  • 首先判断 radix 是否没传或者传了 0 或 10,如果不是,那么则不是十进制的转换,就走 runtime 中提供的 StringParseInt 函数 runtime::StringParseInt
  • 如果是十进制转换就继续走,判断第一个参数的数据类型。
    • 如果是 Smi 或者是没有越界(超 31 位)的 HeapNumber,那么就直接 return 入参,相当于没有转化;否则同样走 runtime::StringParseInt。注意如果这里越界了就会走 ChangeInt32ToTagged,其为 CodeStubAssembler 实现的一个函数,会强转 Int32,如果当前执行环境不允许溢出 32 位,那么转换之后的数字就会不合预期。
    • 如果是 String,则判断是否是 hash,如果是的就找到对应整型 value 返回;否则依然走 runtime::StringParseInt

那么焦点来到了 runtime::StringParseInt。[→ src/runtime/runtime-numbers.cc]

// ES6 18.2.5 parseInt(string, radix) slow path
RUNTIME_FUNCTION(Runtime_StringParseInt) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(2, args.length());
  Handle<Object> string = args.at(0);
  Handle<Object> radix = args.at(1);

  // Convert {string} to a String first, and flatten it.
  Handle<String> subject;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, subject,
                                     Object::ToString(isolate, string));
  subject = String::Flatten(isolate, subject);

  // Convert {radix} to Int32.
  if (!radix->IsNumber()) {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix,
                                       Object::ToNumber(isolate, radix));
  }
  int radix32 = DoubleToInt32(radix->Number());
  if (radix32 != 0 && (radix32 < 2 || radix32 > 36)) {
    return ReadOnlyRoots(isolate).nan_value();
  }

  double result = StringToInt(isolate, subject, radix32);
  return *isolate->factory()->NewNumber(result);
}

这段逻辑比较简单,就不再一行行解读了。值得注意的是,根据标准,如果 radix 不在 2~36 的范围内,会返回 NaN。

1.2 JavaScriptCore 中的 parseInt ()#

接着我们来看看 JavaScriptCore 中的 parseInt()

JavaScriptCore 中关于 JS 语言内置对象的注册都在 [→ runtime/JSGlobalObjectFuntions.cpp] 文件中:

JSC_DEFINE_HOST_FUNCTION(globalFuncParseInt, (JSGlobalObject* globalObject, CallFrame* callFrame))
{
    JSValue value = callFrame->argument(0);
    JSValue radixValue = callFrame->argument(1);

    // Optimized handling for numbers:
    // If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt
    // results in a truncation to integer. In the case of -0, this is converted to 0.
    //
    // This is also a truncation for values in the range INT_MAX+1 <= n < 10^21,
    // however these values cannot be trivially truncated to int since 10^21 exceeds
    // even the int64_t range. Negative numbers are a little trickier, the case for
    // values in the range -10^21 < n <= -1 are similar to those for integer, but
    // values in the range -1 < n <= -10^-6 need to truncate to -0, not 0.
    static const double tenToTheMinus6 = 0.000001;
    static const double intMaxPlusOne = 2147483648.0;
    if (value.isNumber()) {
        double n = value.asNumber();
        if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull())
            return JSValue::encode(jsNumber(static_cast<int32_t>(n)));
    }

    // If ToString throws, we shouldn't call ToInt32.
    return toStringView(globalObject, value, [&] (StringView view) {
        return JSValue::encode(jsNumber(parseInt(view, radixValue.toInt32(globalObject))));
    });
}

WebKit 中的代码注释都很详尽易读,这里也不再解读了。最后,会调用 parseInt,JavaScriptCore 的 parseInt 的实现全放在了 [→ runtime/ParseInt.h] 中,核心代码如下:

ALWAYS_INLINE static bool isStrWhiteSpace(UChar c)
{
    // https://tc39.github.io/ecma262/#sec-tonumber-applied-to-the-string-type
    return Lexer<UChar>::isWhiteSpace(c) || Lexer<UChar>::isLineTerminator(c);
}

// ES5.1 15.1.2.2
template <typename CharType>
ALWAYS_INLINE
static double parseInt(StringView s, const CharType* data, int radix)
{
    // 1. Let inputString be ToString(string).
    // 2. Let S be a newly created substring of inputString consisting of the first character that is not a
    //    StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white
    //    space.) If inputString does not contain any such characters, let S be the empty string.
    int length = s.length();
    int p = 0;
    while (p < length && isStrWhiteSpace(data[p]))
        ++p;

    // 3. Let sign be 1.
    // 4. If S is not empty and the first character of S is a minus sign -, let sign be -1.
    // 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S.
    double sign = 1;
    if (p < length) {
        if (data[p] == '+')
            ++p;
        else if (data[p] == '-') {
            sign = -1;
            ++p;
        }
    }

    // 6. Let R = ToInt32(radix).
    // 7. Let stripPrefix be true.
    // 8. If R != 0,then
    //   b. If R != 16, let stripPrefix be false.
    // 9. Else, R == 0
    //   a. LetR = 10.
    // 10. If stripPrefix is true, then
    //   a. If the length of S is at least 2 and the first two characters of S are either ―0x or ―0X,
    //      then remove the first two characters from S and let R = 16.
    // 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S
    //     consisting of all characters before the first such character; otherwise, let Z be S.
    if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) {
        radix = 16;
        p += 2;
    } else if (radix == 0)
        radix = 10;

    // 8.a If R < 2 or R > 36, then return NaN.
    if (radix < 2 || radix > 36)
        return PNaN;

    // 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters
    //     A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant
    //     digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation;
    //     and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the
    //     mathematical integer value that is represented by Z in radix-R notation.)
    // 14. Let number be the Number value for mathInt.
    int firstDigitPosition = p;
    bool sawDigit = false;
    double number = 0;
    while (p < length) {
        int digit = parseDigit(data[p], radix);
        if (digit == -1)
            break;
        sawDigit = true;
        number *= radix;
        number += digit;
        ++p;
    }

    // 12. If Z is empty, return NaN.
    if (!sawDigit)
        return PNaN;

    // Alternate code path for certain large numbers.
    if (number >= mantissaOverflowLowerBound) {
        if (radix == 10) {
            size_t parsedLength;
            number = parseDouble(s.substring(firstDigitPosition, p - firstDigitPosition), parsedLength);
        } else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32)
            number = parseIntOverflow(s.substring(firstDigitPosition, p - firstDigitPosition), radix);
    }

    // 15. Return sign x number.
    return sign * number;
}

ALWAYS_INLINE static double parseInt(StringView s, int radix)
{
    if (s.is8Bit())
        return parseInt(s, s.characters8(), radix);
    return parseInt(s, s.characters16(), radix);
}

template<typename CallbackWhenNoException>
static ALWAYS_INLINE typename std::invoke_result<CallbackWhenNoException, StringView>::type toStringView(JSGlobalObject* globalObject, JSValue value, CallbackWhenNoException callback)
{
    VM& vm = getVM(globalObject);
    auto scope = DECLARE_THROW_SCOPE(vm);
    JSString* string = value.toStringOrNull(globalObject);
    EXCEPTION_ASSERT(!!scope.exception() == !string);
    if (UNLIKELY(!string))
        return { };
    auto viewWithString = string->viewWithUnderlyingString(globalObject);
    RETURN_IF_EXCEPTION(scope, { });
    RELEASE_AND_RETURN(scope, callback(viewWithString.view));
}

// Mapping from integers 0..35 to digit identifying this value, for radix 2..36.
const char radixDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz";

直接贴出了代码,因为 JavaScriptCore 中的 API 都是严格按照 ECMAScript (ECMA-262) parseInt 标准一步一步按流程实现,可读性和注释也很好,强烈建议读者自己阅读一下,此处不再解读。

1.3 QuickJS 中的 parseInt ()#

QuickJS 的核心代码都在 [→ quickjs.c] 中,首先是 parseInt 的注册代码:

/* global object */
static const JSCFunctionListEntry js_global_funcs[] = {
    JS_CFUNC_DEF("parseInt", 2, js_parseInt ),
	//...
}

js_parseInt 的实现逻辑如下:

static JSValue js_parseInt(JSContext *ctx, JSValueConst this_val,
                           int argc, JSValueConst *argv)
{
    const char *str, *p;
    int radix, flags;
    JSValue ret;

    str = JS_ToCString(ctx, argv[0]);
    if (!str)
        return JS_EXCEPTION;
    if (JS_ToInt32(ctx, &radix, argv[1])) {
        JS_FreeCString(ctx, str);
        return JS_EXCEPTION;
    }
    if (radix != 0 && (radix < 2 || radix > 36)) {
        ret = JS_NAN;
    } else {
        p = str;
        p += skip_spaces(p);
        flags = ATOD_INT_ONLY | ATOD_ACCEPT_PREFIX_AFTER_SIGN;
        ret = js_atof(ctx, p, NULL, radix, flags);
    }
    JS_FreeCString(ctx, str);
    return ret;
}

Bellard 大神的代码注释很少,但同时也非常精炼。

至此,本文介绍完了三个引擎下各自 parseInt 的实现,三者都是基于标准的实现,但由于代码风格不同,读起来也像是阅读三个风格不同散文大家的作品。

不过标准和实现,我们可以发现 parseInt 在真正执行字符串转数字这个操作做了非常多的前置操作,如入参合法判断、入参默认值、字符串格式判断与规整化、越界判断等等,最后再交由 runtime 处理。因此,我们不难推出其效率略低的原因。

接下来,我们再简单看看 parseFloat

2. parseFloat()#

ECMAScript (ECMA-262) parseFloat
image

根据标准,parseFloat 与 parseInt 有两点明显的不同:

  1. 仅支持一个入参,不支持进制转换
  2. 返回值支持浮点型

2.1 V8 中的 parseFloat ()#

V8 中 parseFloat 的相关逻辑都紧挨着 parseInt,这里直接贴出关键实现:

[→ src/builtins/number.tq]

// ES6 #sec-number.parsefloat
transitioning javascript builtin NumberParseFloat(
    js-implicit context: NativeContext)(value: JSAny): Number {
  try {
    typeswitch (value) {
      case (s: Smi): {
        return s;
      }
      case (h: HeapNumber): {
        // The input is already a Number. Take care of -0.
        // The sense of comparison is important for the NaN case.
        return (Convert<float64>(h) == 0) ? SmiConstant(0) : h;
      }
      case (s: String): {
        goto String(s);
      }
      case (HeapObject): {
        goto String(string::ToString(context, value));
      }
    }
  } label String(s: String) {
    // Check if the string is a cached array index.
    const hash: NameHash = s.raw_hash_field;
    if (IsIntegerIndex(hash) &&
        hash.array_index_length < kMaxCachedArrayIndexLength) {
      const arrayIndex: uint32 = hash.array_index_value;
      return SmiFromUint32(arrayIndex);
    }
    // Fall back to the runtime to convert string to a number.
    return runtime::StringParseFloat(s);
  }
}

[→ src/runtime/runtime-numbers.cc]

// ES6 18.2.4 parseFloat(string)
RUNTIME_FUNCTION(Runtime_StringParseFloat) {
  HandleScope shs(isolate);
  DCHECK_EQ(1, args.length());
  Handle<String> subject = args.at<String>(0);

  double value = StringToDouble(isolate, subject, ALLOW_TRAILING_JUNK,
                                std::numeric_limits<double>::quiet_NaN());

  return *isolate->factory()->NewNumber(value);
}

因标准中的流程更为简易,因此较 parseInt 而言, parseFloat 更加简单易读。

2.2 JavaScriptCore 中的 parseFloat ()#

在 JavaScriptCore 中,parseFloat 的逻辑则更加简洁明了:

static double parseFloat(StringView s)
{
    unsigned size = s.length();

    if (size == 1) {
        UChar c = s[0];
        if (isASCIIDigit(c))
            return c - '0';
        return PNaN;
    }

    if (s.is8Bit()) {
        const LChar* data = s.characters8();
        const LChar* end = data + size;

        // Skip leading white space.
        for (; data < end; ++data) {
            if (!isStrWhiteSpace(*data))
                break;
        }

        // Empty string.
        if (data == end)
            return PNaN;

        return jsStrDecimalLiteral(data, end);
    }

    const UChar* data = s.characters16();
    const UChar* end = data + size;

    // Skip leading white space.
    for (; data < end; ++data) {
        if (!isStrWhiteSpace(*data))
            break;
    }

    // Empty string.
    if (data == end)
        return PNaN;

    return jsStrDecimalLiteral(data, end);
}

2.3 QuickJS 中的 parseFloat ()#

而对比 JavaScriptCore,QuickJS 则短短 12 行:

[→ quickjs.c]

static JSValue js_parseFloat(JSContext *ctx, JSValueConst this_val,
                             int argc, JSValueConst *argv)
{
    const char *str, *p;
    JSValue ret;

    str = JS_ToCString(ctx, argv[0]);
    if (!str)
        return JS_EXCEPTION;
    p = str;
    p += skip_spaces(p);
    ret = js_atof(ctx, p, NULL, 10, 0);
    JS_FreeCString(ctx, str);
    return ret;
}

不过对比之后可以知道,QuickJS 这里之所以短小,是没有做 ASCII 和 8Bit 的兼容。阅读 ECMAScript (ECMA-262) parseFloat 之后可以发现,QuickJS 这里的处理其实没有什么问题,最新的标准中并没有要求解释器要这样的兼容。

3. Number()#

ECMAScript (ECMA-262) Number ( value )

image

3.1 V8 中的 Number ()#

Number 作为全局对象,定义还是在 [→ src/init/bootstrapper.cc] 中,在前文介绍 Number.parseInt 的注册时已然介绍过,我们回顾下:

Handle<JSFunction> number_fun = InstallFunction(
        isolate_, global, "Number", JS_PRIMITIVE_WRAPPER_TYPE,
        JSPrimitiveWrapper::kHeaderSize, 0,
        isolate_->initial_object_prototype(), Builtin::kNumberConstructor);
number_fun->shared().DontAdaptArguments();
number_fun->shared().set_length(1);
InstallWithIntrinsicDefaultProto(isolate_, number_fun,
                                     Context::NUMBER_FUNCTION_INDEX);

// Create the %NumberPrototype%
Handle<JSPrimitiveWrapper> prototype = Handle<JSPrimitiveWrapper>::cast(
        factory->NewJSObject(number_fun, AllocationType::kOld));
prototype->set_value(Smi::zero());
JSFunction::SetPrototype(number_fun, prototype);

// Install the "constructor" property on the {prototype}.
JSObject::AddProperty(isolate_, prototype, factory->constructor_string(),
                          number_fun, DONT_ENUM);

这段代码处理注册了 Number 这个对象之外,还初始化了它的原型链,并把构造函数添加到了它的原型链上。构造函数 Builtin::kNumberConstructor 是 Torque 实现的 Builtin,[→ src/builtins/constructor.tq] ,具体实现如下:

// ES #sec-number-constructor
transitioning javascript builtin
NumberConstructor(
    js-implicit context: NativeContext, receiver: JSAny, newTarget: JSAny,
    target: JSFunction)(...arguments): JSAny {
  // 1. If no arguments were passed to this function invocation, let n be +0.
  let n: Number = 0;
  if (arguments.length > 0) {
    // 2. Else,
    //    a. Let prim be ? ToNumeric(value).
    //    b. If Type(prim) is BigInt, let n be the Number value for prim.
    //    c. Otherwise, let n be prim.
    const value = arguments[0];
    n = ToNumber(value, BigIntHandling::kConvertToNumber);
  }

  // 3. If NewTarget is undefined, return n.
  if (newTarget == Undefined) return n;

  // 4. Let O be ? OrdinaryCreateFromConstructor(NewTarget,
  //    "%NumberPrototype%", « [[NumberData]] »).
  // 5. Set O.[[NumberData]] to n.
  // 6. Return O.

  // We ignore the normal target parameter and load the value from the
  // current frame here in order to reduce register pressure on the fast path.
  const target: JSFunction = LoadTargetFromFrame();
  const result = UnsafeCast<JSPrimitiveWrapper>(
      FastNewObject(context, target, UnsafeCast<JSReceiver>(newTarget)));
  result.value = n;
  return result;
}

注释中的 1-6 一一对应着 [ECMAScript (ECMA-262) Number ( value )] 标准中的流程 1-6,因此本文不再花篇章赘述其实现。需要注意的是,标准中明确说明了 Number 是支持 BigInt 的,各引擎的实现也着重注意了这点,这也证明了我们之前运算对照表中的结果。

3.2 JavaScriptCore 中的 Number ()#

JavaScriptCore 中的这段代码则缺少注释,但逻辑上与 V8 一模一样,遵循标准:

[→ runtime/NumberConstructor.cpp]

// ECMA 15.7.1
JSC_DEFINE_HOST_FUNCTION(constructNumberConstructor, (JSGlobalObject* globalObject, CallFrame* callFrame))
{
    VM& vm = globalObject->vm();
    auto scope = DECLARE_THROW_SCOPE(vm);
    double n = 0;
    if (callFrame->argumentCount()) {
        JSValue numeric = callFrame->uncheckedArgument(0).toNumeric(globalObject);
        RETURN_IF_EXCEPTION(scope, { });
        if (numeric.isNumber())
            n = numeric.asNumber();
        else {
            ASSERT(numeric.isBigInt());
            numeric = JSBigInt::toNumber(numeric);
            ASSERT(numeric.isNumber());
            n = numeric.asNumber();
        }
    }

    JSObject* newTarget = asObject(callFrame->newTarget());
    Structure* structure = JSC_GET_DERIVED_STRUCTURE(vm, numberObjectStructure, newTarget, callFrame->jsCallee());
    RETURN_IF_EXCEPTION(scope, { });

    NumberObject* object = NumberObject::create(vm, structure);
    object->setInternalValue(vm, jsNumber(n));
    return JSValue::encode(object);
}

3.3 QuickJS 中的 Number ()#

Number 对象及其原型链的注册代码如下所示:

[→ quickjs.c]

void JS_AddIntrinsicBaseObjects(JSContext *ctx)
{
	//...

	/* Number */
    ctx->class_proto[JS_CLASS_NUMBER] = JS_NewObjectProtoClass(ctx, ctx->class_proto[JS_CLASS_OBJECT], JS_CLASS_NUMBER);
    
    JS_SetObjectData(ctx, ctx->class_proto[JS_CLASS_NUMBER], JS_NewInt32(ctx, 0));
    JS_SetPropertyFunctionList(ctx, ctx->class_proto[JS_CLASS_NUMBER], js_number_proto_funcs, countof(js_number_proto_funcs));
    
    number_obj = JS_NewGlobalCConstructor(ctx, "Number", js_number_constructor, 1, ctx->class_proto[JS_CLASS_NUMBER]);
    
    JS_SetPropertyFunctionList(ctx, number_obj, js_number_funcs, countof(js_number_funcs));
}

同样的时候,在原型链注册的时候绑上了构造函数 js_number_constructor

static JSValue js_number_constructor(JSContext *ctx, JSValueConst new_target,
                                     int argc, JSValueConst *argv)
{
    JSValue val, obj;
    if (argc == 0) {
        val = JS_NewInt32(ctx, 0);
    } else {
        val = JS_ToNumeric(ctx, argv[0]);
        if (JS_IsException(val))
            return val;
        switch(JS_VALUE_GET_TAG(val)) {
#ifdef CONFIG_BIGNUM
        case JS_TAG_BIG_INT:
        case JS_TAG_BIG_FLOAT:
            {
                JSBigFloat *p = JS_VALUE_GET_PTR(val);
                double d;
                bf_get_float64(&p->num, &d, BF_RNDN);
                JS_FreeValue(ctx, val);
                val = __JS_NewFloat64(ctx, d);
            }
            break;
        case JS_TAG_BIG_DECIMAL:
            val = JS_ToStringFree(ctx, val);
            if (JS_IsException(val))
                return val;
            val = JS_ToNumberFree(ctx, val);
            if (JS_IsException(val))
                return val;
            break;
#endif
        default:
            break;
        }
    }
    if (!JS_IsUndefined(new_target)) {
        obj = js_create_from_ctor(ctx, new_target, JS_CLASS_NUMBER);
        if (!JS_IsException(obj))
            JS_SetObjectData(ctx, obj, val);
        return obj;
    } else {
        return val;
    }
}

值得关注的是 QuickJS 追求精简小巧,因此可以自行配置是否支持 BigInt,其余逻辑依然遵循标准。

4. Double tilde (~~) Operator#

ECMAScript (ECMA-262) Bitwise NOT Operator

image

使用~运算符利用到了标准中的第 2 步,对被计算的值做类型转换,从而将字符串转成数值。这里我们关注这个环节具体是在引擎中的哪个步骤完成的。

4.1 V8 中的 BitwiseNot#

首先看看 V8 中对一元运算符的判断:

[→ src/parsing/token.h]

static bool IsUnaryOp(Value op) { return base::IsInRange(op, ADD, VOID); }

定义在 ADD 和 VOID 范围内的 op,都是一元运算符,具体包括 (可见 [→ src/parsing/token.h]),其中 SUB 和 ADD 定义在二元运算符列表的末端,在 IsUnaryOp 中它们也会命中一元符的判断:

E(T, ADD, "+", 12)
E(T, SUB, "-", 12)
T(NOT, "!", 0)
T(BIT_NOT, "~", 0)
K(DELETE, "delete", 0)
K(TYPEOF, "typeof", 0)
K(VOID, "void", 0)

之后进入语法分析阶段,解析 AST 树的过程中,遇到一元运算符会做相应的处理,先调用 ParseUnaryOrPrefixExpression 之后构建一元运算符表达式 BuildUnaryExpression

[→ src/parsing/parser-base.h]

template <typename Impl>
typename ParserBase<Impl>::ExpressionT
ParserBase<Impl>::ParseUnaryExpression() {
  // UnaryExpression ::
  //   PostfixExpression
  //   'delete' UnaryExpression
  //   'void' UnaryExpression
  //   'typeof' UnaryExpression
  //   '++' UnaryExpression
  //   '--' UnaryExpression
  //   '+' UnaryExpression
  //   '-' UnaryExpression
  //   '~' UnaryExpression
  //   '!' UnaryExpression
  //   [+Await] AwaitExpression[?Yield]

  Token::Value op = peek();
  // 一元运算符处理
  if (Token::IsUnaryOrCountOp(op)) return ParseUnaryOrPrefixExpression();
  if (is_await_allowed() && op == Token::AWAIT) {
	// await 处理
    return ParseAwaitExpression();
  }
  return ParsePostfixExpression();
}
template <typename Impl>
typename ParserBase<Impl>::ExpressionT
ParserBase<Impl>::ParseUnaryOrPrefixExpression() {
	//...

	//...
 	// Allow the parser's implementation to rewrite the expression.
   	return impl()->BuildUnaryExpression(expression, op, pos);
}

[→ src/parsing/parser.cc]

Expression* Parser::BuildUnaryExpression(Expression* expression,
                                         Token::Value op, int pos) {
  DCHECK_NOT_NULL(expression);
  const Literal* literal = expression->AsLiteral();
  if (literal != nullptr) {
	// !
    if (op == Token::NOT) {
      // Convert the literal to a boolean condition and negate it.
      return factory()->NewBooleanLiteral(literal->ToBooleanIsFalse(), pos);
    } else if (literal->IsNumberLiteral()) {
      // Compute some expressions involving only number literals.
      double value = literal->AsNumber();
      switch (op) {
	    // +
        case Token::ADD:
          return expression;
        // -
        case Token::SUB:
          return factory()->NewNumberLiteral(-value, pos);
        // ~
        case Token::BIT_NOT:
          return factory()->NewNumberLiteral(~DoubleToInt32(value), pos);
        default:
          break;
      }
    }
  }
  return factory()->NewUnaryOperation(op, expression, pos);
}

如果字面量是数值型且一元运算符此刻不是 NOT(!),那么会把 Value 会转成 Number,如果是 BIT_NOT 再转成 INT32 进行取反运算。

4.2 JavaScriptCore 中的 BitwiseNot#

同样在语法分析生成 AST 阶段,处理到 TILDE(~) 这个 token 后,创建表达式时会做类型转换的工作:

[→ Parser/Parser.cpp]

template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseUnaryExpression(TreeBuilder& context)
{
	//... 省略无关代码
	 while (tokenStackDepth) {
 		switch (tokenType) {
		//... 省略无关代码
		// ~
		case TILDE:
     			expr = context.makeBitwiseNotNode(location, expr);
     			break;
	     // +
		case PLUS:
      			expr = context.createUnaryPlus(location, expr);
     			break;
		//... 省略无关代码
		}
	}
}

[→ parser/ASTBuilder.h]

ExpressionNode* ASTBuilder::makeBitwiseNotNode(const JSTokenLocation& location, ExpressionNode* expr)
{
	if (expr->isNumber())
        return createIntegerLikeNumber(location, ~toInt32(static_cast<NumberNode*>(expr)->value()));
    return new (m_parserArena) BitwiseNotNode(location, expr);
}

[→ parser/NodeConstructors.h]

inline BitwiseNotNode::BitwiseNotNode(const JSTokenLocation& location, ExpressionNode* expr)
        : UnaryOpNode(location, ResultType::forBitOp(), expr, op_bitnot)
{
}

[→ parser/ResultType.h]

static constexpr ResultType forBitOp()
{
    return bigIntOrInt32Type();
}

static constexpr ResultType bigIntOrInt32Type()
{
    return ResultType(TypeMaybeBigInt | TypeInt32 | TypeMaybeNumber);
}

4.3 QuickJS 中的 BitwiseNot#

QuickJS 在语法分析阶段,遇到~这个 token 会调用 emit_op(s, OP_not)

[→ quickjs.c]

/* allowed parse_flags: PF_ARROW_FUNC, PF_POW_ALLOWED, PF_POW_FORBIDDEN */
static __exception int js_parse_unary(JSParseState *s, int parse_flags)
{
    int op;

    switch(s->token.val) {
    case '+':
    case '-':
    case '!':
    case '~':
    case TOK_VOID:
        op = s->token.val;
        if (next_token(s))
            return -1;
        if (js_parse_unary(s, PF_POW_FORBIDDEN))
            return -1;
        switch(op) {
        case '-':
            emit_op(s, OP_neg);
            break;
        case '+':
            emit_op(s, OP_plus);
            break;
        case '!':
            emit_op(s, OP_lnot);
            break;
        case '~':
            emit_op(s, OP_not);
            break;
        case TOK_VOID:
            emit_op(s, OP_drop);
            emit_op(s, OP_undefined);
            break;
        default:
            abort();
        }
        parse_flags = 0;
        break;
	//...
	}
    //...
    }
}

emit_op 会生成 OP_not 字节码操作符,并将源码保存在 fd->byte_code 里。

static void emit_op(JSParseState *s, uint8_t val)
{
    JSFunctionDef *fd = s->cur_func;
    DynBuf *bc = &fd->byte_code;

    /* Use the line number of the last token used, not the next token,
       nor the current offset in the source file.
     */
    if (unlikely(fd->last_opcode_line_num != s->last_line_num)) {
        dbuf_putc(bc, OP_line_num);
        dbuf_put_u32(bc, s->last_line_num);
        fd->last_opcode_line_num = s->last_line_num;
    }
    fd->last_opcode_pos = bc->size;
    dbuf_putc(bc, val);
}

int dbuf_putc(DynBuf *s, uint8_t c)
{
	return dbuf_put(s, &c, 1);
}

int dbuf_put(DynBuf *s, const uint8_t *data, size_t len)
{
    if (unlikely((s->size + len) > s->allocated_size)) {
        if (dbuf_realloc(s, s->size + len))
            return -1;
    }
    memcpy(s->buf + s->size, data, len);
    s->size += len;
    return 0;
}

QuickJS 解释执行的函数是 JS_EvalFunctionInternal,其会调用 JS_CallFree 进行字节码的解释执行,其核心逻辑是调用的 JS_CallInternal 函数。

/* argv[] is modified if (flags & JS_CALL_FLAG_COPY_ARGV) = 0. */
static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
                               JSValueConst this_obj, JSValueConst new_target,
                               int argc, JSValue *argv, int flags)
{
    JSRuntime *rt = caller_ctx->rt;
    JSContext *ctx;
    JSObject *p;
    JSFunctionBytecode *b;
    JSStackFrame sf_s, *sf = &sf_s;
    const uint8_t *pc;
	// ...省略无关代码
	
	for(;;) {
		int call_argc;
		JSValue *call_argv;
		SWITCH(pc) {
		// ...
		CASE(OP_not):
		{
			JSValue op1;
			op1 = sp[-1];
			// 如果是整型
			if (JS_VALUE_GET_TAG(op1) == JS_TAG_INT) {
				sp[-1] = JS_NewInt32(ctx, ~JS_VALUE_GET_INT(op1));
			// 如果不是整型
			} else {
				if (js_not_slow(ctx, sp))
					goto exception;
			}
		}
		BREAK;
		// ...
	}
	// ...
}

可见,解析到 OP_not 时, 如果是整型就直接取反,否则就调用 js_not_slow

static no_inline int js_not_slow(JSContext *ctx, JSValue *sp)
{
    int32_t v1;

    if (unlikely(JS_ToInt32Free(ctx, &v1, sp[-1]))) {
        sp[-1] = JS_UNDEFINED;
        return -1;
    }
    sp[-1] = JS_NewInt32(ctx, ~v1);
    return 0;
}

js_not_slow 会尝试转整型,转不了就转 -1,转的了就转整型后取反。JS_ToInt32Free 转换逻辑如下:

/* return (<0, 0) in case of exception */
static int JS_ToInt32Free(JSContext *ctx, int32_t *pres, JSValue val)
{
 redo:
	tag = JS_VALUE_GET_NORM_TAG(val);
	switch(tag) {
	case JS_TAG_INT:
	case JS_TAG_BOOL:
	case JS_TAG_NULL:
	case JS_TAG_UNDEFINED:
		ret = JS_VALUE_GET_INT(val);
		break;
		// ...
	default:
		val = JS_ToNumberFree(ctx, val);
		if (JS_IsException(val)) {
			*pres = 0;
			return -1;
		}
		goto redo;
	}
    *pres = ret;
    return 0;
}

对于字符串,会走到 JS_ToNumberFree,之后调用 JS_ToNumberHintFree,涉及到字符串处理的核心逻辑如下:

static JSValue JS_ToNumberHintFree(JSContext *ctx, JSValue val,
                                   JSToNumberHintEnum flag)
{
    uint32_t tag;
    JSValue ret;

 redo:
    tag = JS_VALUE_GET_NORM_TAG(val);
    switch(tag) {
    // ...省略无关逻辑
	case JS_TAG_STRING:
        {
            const char *str;
            const char *p;
            size_t len;
            
            str = JS_ToCStringLen(ctx, &len, val);
            JS_FreeValue(ctx, val);
            if (!str)
                return JS_EXCEPTION;
            p = str;
            p += skip_spaces(p);
            if ((p - str) == len) {
                ret = JS_NewInt32(ctx, 0);
            } else {
                int flags = ATOD_ACCEPT_BIN_OCT;
                ret = js_atof(ctx, p, &p, 0, flags);
                if (!JS_IsException(ret)) {
                    p += skip_spaces(p);
                    if ((p - str) != len) {
                        JS_FreeValue(ctx, ret);
                        ret = JS_NAN;
                    }
                }
            }
            JS_FreeCString(ctx, str);
        }
        break;
	// ...省略无关逻辑
	}
	// ...省略无关逻辑
}

可以转化的用 JS_NewInt32 去处理,否则返回 NaN。

5. Unary Operator (+)#

ECMAScript (ECMA-262) Unary Plus Operator

image

一元运算符加号是笔者最喜欢用的一种字符串转数值的方式,标准中它没有什么花里胡哨的、非常简介明了,就是用来做数值类型转换的。

5.1 V8 中的 UnaryPlus#

语法分析阶段同 Double tilde (~~) Operator,此处不再赘述。

5.2 JavaScriptCore 中的 UnaryPlus#

语法分析阶段同 Double tilde (~~) Operator,此处不再赘述。

5.3 QuickJS 中的 UnaryPlus#

语法分析阶段同 Double tilde (~~) Operator,此处不再赘述。最后依然走到 JS_CallInternal

[→ quickjs.c]

/* argv[] is modified if (flags & JS_CALL_FLAG_COPY_ARGV) = 0. */
static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
                               JSValueConst this_obj, JSValueConst new_target,
                               int argc, JSValue *argv, int flags)
{
    JSRuntime *rt = caller_ctx->rt;
    JSContext *ctx;
    JSObject *p;
    JSFunctionBytecode *b;
    JSStackFrame sf_s, *sf = &sf_s;
    const uint8_t *pc;
	// ...省略无关代码
	
	for(;;) {
		int call_argc;
		JSValue *call_argv;
		SWITCH(pc) {
		// ...
		CASE(OP_plus):
			{
			    JSValue op1;
				uint32_t tag;
				op1 = sp[-1];
				tag = JS_VALUE_GET_TAG(op1);
				if (tag == JS_TAG_INT || JS_TAG_IS_FLOAT64(tag)) {
				} else {
					if (js_unary_arith_slow(ctx, sp, opcode))
				 		goto exception;
				}
				BREAK;
			}
		// ...省略无关代码
		}
	}
	// ...省略无关代码
}

可以发现当操作数是 Int 或 Float 时,就直接不处理,和标准中规范的一致。而其他情况就调用 js_unary_arith_slow,若调用过程中遇到异常就走异常逻辑:

static no_inline __exception int js_unary_arith_slow(JSContext *ctx, JSValue *sp, OPCodeEnum op)
{
    JSValue op1;
    double d;

    op1 = sp[-1];
    if (unlikely(JS_ToFloat64Free(ctx, &d, op1))) {
        sp[-1] = JS_UNDEFINED;
        return -1;
    }
    switch(op) {
    case OP_inc:
        d++;
        break;
    case OP_dec:
        d--;
        break;
    case OP_plus:
        break;
    case OP_neg:
        d = -d;
        break;
    default:
        abort();
    }
    sp[-1] = JS_NewFloat64(ctx, d);
    return 0;
}

这里的 JS_ToFloat64Free 的内部处理逻辑和和 4.3 时的 JS_ToFloat64Free 一样,不再赘述。js_unary_arith_slow 处理完数值转换之后,若运算符是一元运算加号,则直接返回;否则还会根据运算符再做相应的运算处理,如自增符还需要 + 1 等。


至此,我们讲解了以下 5 个方法在解释器中的具体实现:

  1. parseInt()
  2. parseFloat()
  3. Number()
  4. Double tilde (~~) Operator
  5. Unary Operator (+)

除却以上 5 个数值转换方法之外,还有以下 4 个方法,因篇幅问题本文暂且不再详述:

  • Math.floor()
  • Multiply with number
  • The Signed Right Shift Operator(>>)
  • The Unsigned Right Shift Operator(>>>)

字符串转数值各有优劣,使用者可根据自己的需要进行选用,以下是我个人总结的一些经验:

如果返回值只要求整形:

  • 追求代码简洁和执行效率,对输入值有一定的把握(无需防御),优先选用 Unary Operator (+)
  • 对输入值没有把握,需要做防御式编程,使用 parseInt ()
  • 需要支持 BigInt, 优先考虑使用 Number () ;如果用 Double tilde (~~) Operator,需要注意 31 位问题。

如果返回值要求浮点型:

  • 追求代码简洁和执行效率,对输入值有一定的把握(无需防御),优先选用 Unary Operator (+)
  • 对输入值没有把握,需要做防御式编程,使用 parseFloat ()
  • 需要支持 BigInt,使用 parseFloat ()
加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。